Puri Sharma Kalia.pdf
Download ->->->-> https://bytlly.com/2t7mAP
References [1] Tian, X.R.; Feng, G.T.; Ma, Z.Q.; Xie, N.; Zhang, J.; Zhang, X.; Tang, H.F. Three new glycosides from the whole plant of Clematis lasiandra Maxim and their cytotoxicity. Phytochem. Lett., 2014, 10, 168-172.[ ] [2] Van Wyk, B.E.; Wink, M. Medicinal Plants of the World: An illustrated scientific guide to important medicinal plants and their uses; Timber press: Portland, OR, USA, 2004. [3] Kharwar, R.N.; Verma, V.C.; Strobel, G.; Ezra, D. The endophytic fungal complex of Catharanthus roseus (L.) G Don. Curr. Sci., 2008, 95, 228-233.[4] Pandey, S.S.; Singh, S.; Babu, C.S.; Shanker, K.; Srivastava, N.K.; Kalra, A. Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta, 2016, 243(5), 1097-1114.[ -016-2467-9] [PMID: 26794966] [5] Mishra, A.; Singh, S.P.; Mahfooz, S.; Singh, S.P.; Bhattacharya, A.; Mishra, N.; Nautiyal, C.S. Endophyte mediated modulation of defense-responsive genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata stress. Appl. Environ. Microbiol., 2018, 84(8), e02845-e17.[ -17] [PMID: 29453255] [6] Golinska, P.; Wypij, M.; Agarkar, G.; Rathod, D.; Dahm, H.; Rai, M. Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie van Leeuwenhoek, 2015, 108(2), 267-289.[ -015-0502-7] [PMID: 26093915] [7] Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol., 2011, 90(6), 1829-1845.[ -011-3270-y] [PMID: 21523479] [8] Gunatilaka, A.A.L. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod., 2006, 69(3), 509-526.[ ] [PMID: 16562864] [9] Verma, V.C.; Kharwar, R.N.; Strobel, G.A. Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun., 2009, 4(11), 1511-1532.[ ] [PMID: 19967984] [10] Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep., 2006, 23(5), 753-771.[ ] [PMID: 17003908] [11] Strobel, G.A. Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol., 2002, 22(4), 315-333.[ ] [PMID: 12487423] [12] Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 2003, 67(4), 491-502.[ -502.2003] [PMID: 14665674] [13] Kusari, S.; Spiteller, M. Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat. Prod. Rep., 2011, 28(7), 1203-1207.[ ] [PMID: 21629952] [14] Kusari, S.; Spiteller, M. Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Metabolomics; Roessner, U., Ed.; InTech: Rijeka, 2012; pp. 241-266.[ ] [15] Venugopalan, A.; Srivastava, S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol. Adv., 2015, 33(6 Pt 1), 873-887.[ ] [PMID: 26225453] [16] Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol., 2013, 11(1), 21-32.[ ] [PMID: 23178386] [17] van Wezel, G.P.; McDowall, K.J. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep., 2011, 28(7), 1311-1333.[ ] [PMID: 21611665] [18] Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993, 260(5105), 214-216.[ ] [PMID: 8097061] [19] Kusari, S.; Verma, V.C.; Lamshoeft, M.; Spiteller, M. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J. Microbiol. Biotechnol., 2012, 28(3), 1287-1294.[ -011-0876-2] [PMID: 22805849] [20] Kusari, S.; Lamshöft, M.; Spiteller, M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J. Appl. Microbiol., 2009, 107(3), 1019-1030.[ -2672.2009.04285.x] [PMID: 19486398] [21] Puri, S.C.; Verma, V.; Amna, T.; Qazi, G.N.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod., 2005, 68(12), 1717-1719.[ ] [PMID: 16378360] [22] Kusari, S.; Kosuth, J.; Cellarova, E.; Spiteller, M. Survival-strategies of endophytic Fusarium solani against indigenous camptothecin biosynthesis. Fungal Ecol., 2011, 4, 219-223.[ ] [23] Kusari, S.; Zühlke, S.; Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod., 2009, 72(1), 2-7.[ ] [PMID: 19119919] [24] Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Mohana Kumar, P.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Uma Shaanker, R. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 2010, 71(1), 117-122.[ ] [PMID: 19863979] [25] Kusari, S.; Lamshöft, M.; Zühlke, S.; Spiteller, M. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod., 2008, 71(2), 159-162.[ ] [PMID: 18220354] [26] Kumar, A.; Patil, D.; Rajamohanan, P.R.; Ahmad, A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One, 2013, 8(9), e71805.[ ] [PMID: 24066024] [27] Eyberger, A.L.; Dondapati, R.; Porter, J.R. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod., 2006, 69(8), 1121-1124.[ ] [PMID: 16933860] [28] Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-Ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; Sharma, A.; Kumar, R.; Sharma, R.K.; Qazi, G.N. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol., 2006, 122(4), 494-510.[ ] [PMID: 16375985] [29] Pandey, S.S.; Singh, S.; Babu, C.S.; Shanker, K.; Srivastava, N.K.; Shukla, A.K.; Kalra, A. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci. Rep., 2016, 6, 26583.[ ] [PMID: 27220774] [30] Singh, S.; Pandey, S.S.; Shanker, K.; Kalra, A. Endophytes enhance the production of ajmalicine and serpentine content by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. J. Appl. Microbiol., 2020, 128(4), 1128-1142.[ ] [PMID: 31821696] [31] Strobel, G.A. Endophytes as sources of bioactive products. Microbes Infect., 2003, 5(6), 535-544.[ -4579(03)00073-X] [PMID: 12758283] [32] Owen, N.L.; Hundley, N. Endophytes--the chemical synthesizers inside plants. Sci. Prog., 2004, 87(Pt 2), 79-99.[ ] [PMID: 15782772] [33] CLSI (Clinical and Laboratory Standards Institute). Methods for dilution Antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard-tenth edition; Clinical Laboratory and Standards Institute: Wayne, PA, USA, 2015. CLSI document M07-A10.[34] Sun, S.; Li, Y.; Guo, Q.; Shi, C.; Yu, J.; Ma, L. In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob. Agents Chemother., 2008, 52(2), 409-417.[ -07] [PMID: 18056277] [35] Iten, F.; Saller, R.; Abel, G.; Reichling, J. Additive antimicrobial [corrected] effects of the active components of the essential oil of Thymus vulgaris--chemotype carvacrol. Planta Med., 2009, 75(11), 1231-1236.[ -0029-1185541] [PMID: 19347798] [36] Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res., 2007, 21(10), 989-994.[ ] [PMID: 17562569] [37] Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother., 2002, 46(6), 1914-1920.[ -1920.2002] [PMID: 12019108] [38] Oonmetta-aree, J.; Suzuki, T.; Gasaluck, P.; Eumkeb, G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. Lebensm. Wiss. Technol., 2006, 39, 1214-1220.[ ] [39] Kalia, N.P.; Mahajan, P.; Mehra, R.; Nargotra, A.; Sharma, J.P.; Koul, S.; Khan, I.A. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J. Antimicrob. Chemother., 2012, 67(10), 2401-2408.[ ] [PMID: 22807321] [40] Sharma, S.; Chattopadhyay, S.K.; Yadav, D.K.; Khan, F.; Mohanty, S.; Maurya, A.; Bawankule, D.U. QSAR, docking and in vitro studies for anti-inflammatory activity of cleomiscosin A methyl ether derivatives. Eur. J. Pharm. Sci., 2012, 47(5), 952-964.[ ] [PMID: 23022518] [41] Singh, M.; Hamid, A.A.; Maurya, A.K.; Prakash, O.; Khan, F.; Kumar, A.; Aiyelaagbe, O.O.; Negi, A.S.; Bawankule, D.U. Synthesis of diosgenin analogues as potential anti-inflammatory agents. J. Steroid Biochem. Mol. Biol., 2014, 143, 323-333.[ ] [PMID: 24816230] [42] Chen, S.; Feng, Z.; Wang, Y.; Ma, S.; Hu, Z.; Yang, P.; Chai, Y.; Xie, X. Discovery of novel ligands for TNF-α and TNF receptor-1 through structure based virtual screening and biological assay. J. Chem. Inf. Model., 2017, 57(5), 1101-1111.[ ] [PMID: 28422491] [43] Somers, W.; Stahl, M.; Seehra, J.S. 1.9 A crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J., 1997, 16(5), 989-997.[ ] [PMID: 9118960] [44] Yadav, D.K.; Dhawan, S.; Chauhan, A.; Qidwai, T.; Sharma, P.; Bhakuni, R.S.; Dhawan, O.P.; Khan, F. QSAR and docking based semi-synthesis and in vivo evaluation of artemisinin derivatives for antimalarial activity. Curr. Drug Targets, 2014, 15(8), 753-761.[ ] [PMID: 24975562] [45] Yadav, D.K.; Kalani, K.; Singh, A.K.; Khan, F.; Srivastava, S.K.; Pant, A.B. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7. Curr. Med. Chem., 2014, 21(9), 1160-1170.[ ] [PMID: 24180274] [46] Yadav, D.K.; Kumar, S.; Saloni, ; Singh, H.; Kim, M.H.; Sharma, P.; Misra, S.; Khan, F. Molecular docking, QSAR and ADMET studies of withanolide analogs against breast cancer. Drug Des. Devel. Ther., 2017, 11, 1859-1870.[ ] [PMID: 28694686] [47] Yadav, D.K.; Rai, R.; Kumar, N.; Singh, S.; Misra, S.; Sharma, P.; Shaw, P.; Pérez-Sánchez, H.; Mancera, R.L.; Choi, E.H.; Kim, M.H.; Pratap, R. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage. Sci. Rep., 2016, 6, 38128.[ ] [PMID: 27922047] [48] Bisht, R.; Bhatt, A.; Agarwal, P.K. Antimicrobial, antioxidant activity and phytochemical analysis of an endophytic fungi Penicillium oxalicum isolated from a gymnosperm tree Cupressus torulosa D. Don. of garhwal region. Int. J. Sci. Eng. Manag., 2016, 1(2), 90-96.[ ] [49] Tong, X.; Shen, X.Y.; Hou, C.L. Antimicrobial Activity of Fungal Endophytes from Vaccinium dunalianum var. urophyllum. Sains Malays., 2018, 47(8), 1685-1692.[ -2018-4708-07] [50] Priyadharsini, P.; Muthukumar, T. The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilisation and phytohormone production. Fungal Ecol., 2017, 27, 69-77.[ ] [51] Campos, F.F.; Rosa, L.H.; Cota, B.B.; Caligiorne, R.B.; Rabello, A.L.T.; Alves, T.M.; Rosa, C.A.; Zani, C.L. Leishmanicidal metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). PLoS Negl. Trop. Dis., 2008, 2(12), e348.[ ] [PMID: 19079599] [52] Manamgoda, D.S.; Cai, L.; Bahkali, A.H.; Chukeatirote, E.; Hyde, K.D. Cochliobolus: an overview and current status of species. Fungal Divers., 2011, 51, 3-42.[ -011-0139-4] [53] Kumar, C.G.; Mongolla, P.; Sujitha, P.; Joseph, J.; Babu, K.S.; Suresh, G.; Ramakrishna, K.V.S.; Purushotham, U.; Sastry, G.N.; Kamal, A. Metabolite profiling and biological activities of bioactive compounds produced by Chrysosporium lobatum strain BK-3 isolated from Kaziranga National Park, Assam, India. Springerplus, 2013, 2(1), 122.[ -1801-2-122] [PMID: 23565355] [54] Jeon, Y.T.; Ryu, K.H.; Kang, M.K.; Park, S.H.; Yun, H.; Kim, S.U. Alternariol monomethyl ether and α,β-Dehydrocurvularin from endophytic fungi Alternaria spp. inhibit appressorium formation of Magnaporthe grisea. J. Korean Soc. Appl. Biol. Chem., 2010, 53(1), 39-42.[ ] [55] Gaur, R.; Gupta, V.K.; Singh, P.; Pal, A.; Darokar, M.P.; Bhakuni, R.S. Drug resistance reversal potential of Isoliquiritigenin and Liquiritigenin isolated from Glycyrrhiza glabra against Methicillin resistant Staphylococcus aureus (MRSA). Phytother. Res., 2016, 30(10), 1708-1715.[ ] [PMID: 27388327] [56] Gupta, V.K.; Tiwari, N.; Gupta, P.; Verma, S.; Pal, A.; Srivastava, S.K.; Darokar, M.P. A clerodane diterpene from Polyalthia longifolia as a modifying agent of the resistance of methicillin resistant Staphylococcus aureus. Phytomedicine, 2016, 23(6), 654-661.[ ] [PMID: 27161406] [57] Gupta, P.; Patel, D.K.; Gupta, V.K.; Pal, A.; Tandon, S.; Darokar, M.P. Citral, a monoterpenoid aldehyde interacts synergistically with norfloxacin against methicillin resistant Staphylococcus aureus. Phytomedicine, 2017, 34, 85-96.[ ] [PMID: 28899514] [58] Olajuyigbe, O.O.; Afolayan, A.J. Synergistic interactions of methanolic extract of Acacia mearnsii De Wild. with antibiotics against bacteria of clinical relevance. Int. J. Mol. Sci., 2012, 13(7), 8915-8932.[ ] [PMID: 22942742] [59] Martins, M.; McCusker, M.P.; Viveiros, M.; Couto, I.; Fanning, S.; Pagès, J.M.; Amaral, L. A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol. J., 2013, 7, 72-82.[ ] [PMID: 23589748] [60] Christiaens, I.; Zaragoza, D.B.; Guilbert, L.; Robertson, S.A.; Mitchell, B.F.; Olson, D.M. Inflammatory processes in preterm and term parturition. J. Reprod. Immunol., 2008, 79(1), 50-57.[ ] [PMID: 18550178] [61] Kumar, A.; Singh, S.; Kumar, A.; Bawankule, D.U.; Tandon, S.; Singh, A.K.; Verma, R.S.; Saikia, D. Chemical composition, bactericidal kinetics, mechanism of action, and anti-inflammatory activity of Isodon melissoides (Benth.) H. Hara essential oil. Nat. Prod. Res., 2019, 35(4), 690-695.[ ] [PMID: 30964333] Mark Item Purchase PDF Rights & Permissions Print Export Cite as Current Topics in Medicinal Chemistry Title:The Bioactive Potential of Culturable Fungal Endophytes Isolated From the Leaf of Catharanthus roseus (L.) G. Don 2b1af7f3a8